
Pintos lab 3
Instructor: Youngjin Kwon

Big picture: Running a user program

• Limited physical memory, but many processes want to use physical
memory. Physical memory isn’t big enough to store every process’s
pages all the time

• If a page isn’t needed in physical memory, it gets “paged out”
(written to swap table or file system)

• When a process needs a page and it’s not in physical memory, it has
to get “paged in” (usually “paging out” another page)

Things to do

• Supplemental page table

• Physical frame management

• Modifying the page fault handler for lazy loading (demand paging)

- Stack growth, file-maped etc

• mmap, munmap

• Swap in/out

Terminology

• Page: contiguous region of virtual memory
• Frame: contiguous region of physical memory
• Page Table: data structure to translate a virtual address to
physical address (page to a frame)
• Eviction: removing a page from its frame and potentially
writing it to swap table or file system
• Swap Table: where evicted pages are written to in the swap
partition

Data structures you must design

1. Supplemental page table: per-process data structure that tracks supplemental data
for each page, such as location of data (frame/disk/swap), pointer to corresponding
kernel virtual address, active vs. inactive, etc.

2. Frame table: global data structure that keeps track of physical frames that are
allocated/free.

3. Swap table: keeps track of swap slots.

4. File mapping table: keeps track of which memory-mapped files are mapped to
which pages.

Many choices for data structures

• Arrays: simplest approach, sparsely populated array wastes
memory

• Lists: pretty simple, traversing a list can take lots of time

• Bitmaps: array of bits each of which can be true or false, track
usage in a set of identical resources (lib/kernel/bitmap.[ch])

• Hash Tables: (lib/kernel/hash.[ch])

Concept of lazy loading

• When a virtual address is created (mmap), pintos associates a
struct page to the virtual address

• Each virtual address is used for different purposes;
anonymous memory, file-backed memory
• A struct page reflects the information (going over struct page)
• Allocating struct page does not mean a physical frame is allocated

to the virtual address. The actual physical is allocated in ()

choiwheatley
storage

Where to start?

Struct page and page_operations

• How to fill the contents of a frame after it is allocated?
• A page initially starts with uninit_page, then
• A page for anonymous memory à anon_initializer
• A page for file-backed memory à file_map_initializer
• What function associate initializer according to each page’s type?

Supplemental Page Table

• Supplements the page table with additional information
about each page. Why not just change page table directly?
Limitations on page table format.
• spt_find_page: find struct page from spt and virtual address

• Two purposes:
1. On page fault, kernel looks up virtual page in supplemental

page table to find what/where data should be there.
2. When a process terminates, kernel determines what

resources to free.

choiwheatley
프로세스가 종료될 때 커널이 해제시킬 페이지를 선택하는 데에도 spt가 활용된다.

Frame Table

• Easy to get a frame when not all the frames are full, but how do
we get a frame to store a page if all the frames are full?

• Solution: Eviction, managed by frame table.

• Page replacement algorithm should approximate LRU and perform
at least as well as the clock algorithm.
• vm_get_victim

• Only manages frames for user pages (PAL_USER)

Frame Table

• How to evict a page?
1. Choose a frame to evict, using your page replacement algorithm

2. Remove page table reference(s) the frame (only multiple
references if implementing extra credit)

3. If necessary, write the page to the file system or swap

Leverage accessed and dirty bits, set by CPU.

choiwheatley
file system과 swap은 서로 다르다는 건가? 예를 들어 load된 페이지는 file system으로 내려가고 open된 파일은 swap 영역으로 내려간다?

Swap Table

• Track in-use and free swap slots.

• Allow picking an unused swap slot for evicting a page from
its frame to the swap partition.

• Allow freeing a swap slot when its page read back or process
terminated

choiwheatley
swap slot = swap file 안에 페이지 단위로 할당된 말 그대로의 슬롯을 의미하려나

Beware synchronization

• Multiple threads will be trying to page in/page out. Make
sure your data structures are synchronized!

Stack Growth

• Project 2: pre-allocate space for user process’s stack.
• Project 3: dynamically allocate more pages for a process stack
as needed.

• Valid stack accesses can now cause page faults!

• Allocate new page in page fault handler if valid stack access.
• Get %rsp from struct intr_frame passed to page_fault()

choiwheatley

choiwheatley
if_->rsp에 저장되어있지롱

Memory Mapped Files

• mmap() and munmap()
• Processes may map files into their address space Memory-
mapped pages must be loaded from disk lazily.
• mmap() will return error status if:

- The size of the file is 0 bytes
- File will overlap with another already mapped page
- addr is not page aligned.

• When you evict a mmap’d page, write changes back to
original file.
• All mappings are implicitly unmapped on process exit.

choiwheatley
spt_find를 해야겠지.

Where to page out/evict to?

• Different “types” of pages that can be paged out. User stack
pages → page out to swap
• File pages (mmap’d files) → page out to file system

- If it’s dirty, write changes out to the corresponding file.
- If it’s not dirty, simply deallocate because you can

reload from the filesystem.

choiwheatley
frame_table이 필요한 정보: seek할 위치

Suggested order

1. Frame table. Don’t implement swapping yet. You should still
pass all project 2 tests.

2. Supplemental page table and page fault handler (lazily load
code and data segments via page fault handler). You should
pass all project 2 functionality tests, but only some robustness
tests.

3. Stack growth, mapped files, page reclamation.

4. Eviction (don’t forget synchronization!)

