
Youjip Won

Operating Systems Lab

Part 3: Virtual Memory

https://oslab.kaist.ac.kr/

Overview of Virtual Memory

 Background of Virtual Memory in Pintos

 Requirements

 Paging(swapping)

 Growing stack

 Memory mapped file

 Accessing user memory

2 Youjip Won

https://oslab.kaist.ac.kr/

Swapping

3 Youjip Won

https://oslab.kaist.ac.kr/

To Do’s

 Implement data structure to represent physical page frame.

 Implement page replacement policy such as LRU, clock, second-chance

 swapping

 Store victim pages in swap space when they belong to data segment or stack

segment.

 swap-out pages are reloaded into memory by demand paging.

4 Youjip Won

https://oslab.kaist.ac.kr/

Hardware Support

 The dirty bit of page table is set to “1” by hardware when writing to the memory

space

 The accessed bit in page table is set to ‘1’ by hardware each time the page is

referenced

 When page with dirty bit “1” is selected as victim, the changes must always be

stored on disk

 Hardware does not re-zero the accessed bit.

5 Youjip Won

ADDR AVL D 1 U W P
31 12 11 9 6 5 2 1 0

Accessed bit
Dirty bit

https://oslab.kaist.ac.kr/

Page Table Manipulation in Pintos
(userprog/pagedir.c)

 bool pagedir_is_dirty (uint32_t *pd, const void *vpage)

 Return dirty bit of pte for vpage in pd

 void pagedir_set_dirty (uint32_t *pd, const void *vpage,

bool dirty)

 Set the dirty bit to dirty in the pte for vpage in pd

 bool pagedir_is_accessed (uint32_t *pd, const void

*vpage)

 Return access bit of pte for vpage in pd

 void pagedir_set_accessed (uint32_t *pd, const void

*vpage, bool accessed)

 Set the access bit to accessed in the pte for vpage in pd

6 Youjip Won

https://oslab.kaist.ac.kr/

struct page: New data structure required

Select the physical page frame for replacement.

 Data structure representing each physical page that contains a user page

 physical address of page

 reference to the virtual page object to which physical page is mapped

 Reference to the thread structure to which it belongs

 lru: field for list

7 Youjip Won

struct page {

 // fill this out

};

pintos/src/vm/page.h

https://oslab.kaist.ac.kr/

A page pool for swapping

8 Youjip Won

pagelru_list

vm_entry

vaddr

...

page

thread

vme

…

page page …

thread

vme

…

thread

vme

…

thread

vme

…

thread

pagedir

vm

...

A

Page Table

Accessed BitProcess Address Space Physical Memory

 Manage physical pages in use as a list of pages.

 lru_list : global variable

https://oslab.kaist.ac.kr/

page

thread

vme

kaddr

…

page

thread

vme

kaddr

Block Device

Swap-out

9 Youjip Won

vm_entry

vaddr

...

page

Page Table

Physical Memory

thread

pagedir

vm

...

Process Address
Space

1. Select victim
page

…
3. Nullify

Entry

kaddr

thread

vme

…

2. If necessary,
 Write to disk

https://oslab.kaist.ac.kr/

 Swap partition is managed per swap slot unit(4 Kbyte).

 Maintaining a swap partition: swap bitmap (global variable in memory)

 Search bitmap for free slot.

 What happens to swap bitmap if the system crashes?

Managing swap partition

10 Youjip Won

…swap partition
(Disk)

Free Used Used Used Used Free Used Free

Swap slot (4KB)

swap bitmap
(Memory) 0 1 1 1 1 0 1 0 …

First-fit

https://oslab.kaist.ac.kr/

Functions offered by pintos for swap space
manipulation

 Swap partition is provided as block device in pintos.

 Functions for block device (src/block/block.c)

 struct block *block_get_role (enum block_type role)

 Return the block device (struct block *) fulfilling the given ROLE.

 ROLEs defined in pintos now (devices/block.h)

◼ BLOCK_KERNEL: OS Partition

◼ BLOCK_FILESYS: File system

◼ BLOCK_SCRATCH: Scratch partition

◼ BLOCK_SWAP: Swap partition

 void block_read (struct block *block, block_sector_t sector,

void *buffer)

 Read contents at sector on block and save them at buffer

 void block_write (struct block *block, block_sector_t sector,

const void *buffer)

 Write contents at buffer at sector on block

11 Youjip Won

https://oslab.kaist.ac.kr/

Implementation

 LRU list for physical page frame

 List of struct page

 List of physical pages allocated to user process

 functions for allocate/release physical page frame from the list

 When there runs out of physical page frame, select a victim and swap it out.

 Modify page fault handler for swapping.

 Before: Physical page is allocated directly when page fault occurs.

 When there is no page to allocate, pintos is finished.

 After: Physical page is allocated from LRU list when page fault occurs.

 When there is no page to allocate, pintos swap in the page.

12 Youjip Won

https://oslab.kaist.ac.kr/

Functions to write

13 Youjip Won

 Function about LRU list (initializing, insert, remove).

 Function to allocate a page from LRU list.

 Function to free page from LRU list.

 Function to select victim page and swap-out the page.

 e.g.: Clock algorithm, Second chance algorithm

 Function about swapping (initializing, swap in, swap out).

https://oslab.kaist.ac.kr/

Functions to modify

14 Youjip Won

 bool handle_mm_fault(struct vm_entry *vme)

 Modify to allocate physical pages from LRU list when page fault occurs

 Modify to swap-in if vm_entry type is VM_ANON

 static bool setup_stack(void **esp)

 Modify to allocate pages from LRU list when page fault occurs

 int main(void)

 Initialize LRU list.

https://oslab.kaist.ac.kr/

Functions for allocation/free page

 Try to obtain free space when memory cannot be allocated through

palloc_get_page() within the page allocation function.

15 Youjip Won

Page allocation

NO

Return page

YES

Determine victim page

Add page to LRU list

find page in LRU list

Page free

Delete from LRU list

palloc_free_page()

free(page)

palloc_get_page()

Swap-out victim page

https://oslab.kaist.ac.kr/

Swap-out

16

 Type of a page in the physical page frame

 VM_BIN

 If dirty bit is “1”, write to the swap partition and free the page frame.

 Change type to VM_ANON for demand paging

 VM_FILE

 If dirty bit is “1” , write the page to the file and free the page frame.

 If dirty bit is “0”, free the page frame.

 VM_ANON

 Write to the swap partition.

 Mark the page “not present” in pd (page directory).

void pagedir_clear_page (uint32_t *pd, void *upage)

Youjip Won

https://oslab.kaist.ac.kr/

Demand paging for anonymous page (stack or
heap)

17 Youjip Won

handle_mm_fault

Page
allocation?

YES

VM_BIN? VM_ANON?

Fail

swap-in
Load data

(file → memory)

YES YES

Setup page table

NO

Check the
vm_entry type

NO

Success

NO

https://oslab.kaist.ac.kr/

Modify handle_mm_fault()

 If vm_entry type is VM_ANON, modify code to swap in

18 Youjip Won

bool handle_mm_fault(struct vm_entry *vme){

 bool success = false;

 viod *kaddr;

 ...

 switch(vme->type){

 case VM_BIN:

 success = load_file(kaddr, vme);

 break;

 case VM_ANON:

 /* insert swap in code */

 break;

 }

 ...

pintos/src/userporg/process.c

https://oslab.kaist.ac.kr/

Growing Stack

19 Youjip Won

https://oslab.kaist.ac.kr/

Expandable Stack

 Implement expandable stack

 In current pintos, stack size is fixed to 4KB.

 Make the stack expandable.

 If a process accesses the address that lies outside the stack and that can be

handled by expanding the stack, expand the stack.

◼ e.g. (access address < stack pointer – 32) Expand stack

 maximum size of stack is 8MB.

20 Youjip Won

https://oslab.kaist.ac.kr/

 Expand the stack when the memory access is within 32 Byte of stack top.

 “PUSHA” instruction in 80x86 pushes 32 bytes at once.

When to expand stack

21

Maximum Limit:
0xC0000000-8MByte

stack start :
0xC0000000

Youjip Won

Process Address Space

grow limit

allocated stack boundary

Consider invalid access
:segmentation fault occur

Space within grow limit from esp : expand
stack in case of page fault

stack pointer(esp)

https://oslab.kaist.ac.kr/

Stack extension mechanism

22 Youjip Won

handle_mm_fault

Allocate
page?

YES

VM_BIN? VM_ANON?
Stack

growth

Fail

swap-in
Load data

(file → memory)
expand stack

YES YES YES

Set up page table

NO NO

Check the
vm_entry type

NO

Success

NO

Virtual memory
Swapping & page
replacement policy

Stack extension

https://oslab.kaist.ac.kr/

Memory Mapped File

23Youjip Won

https://oslab.kaist.ac.kr/

mmap vs. munmap

main (int argc, char *argv[]) {

 int i;

 for (i = 1; i < argc; i++) {

 int fd;

 mapid_t map;

 void *data = (void *) 0x10000000;

 int size;

 fd = open (argv[i]);

 size = filesize (fd);

 map = mmap (fd, data);

 write (STDOUT_FILENO, data, size);

 munmap (map);

 }

 return EXIT_SUCCESS;

}

24 Youjip Won

File

Process Address
Space

Disk

https://oslab.kaist.ac.kr/

mmap (int fd, void* addr)

mmap and munmap

25 Youjip Won

Process Virtual Address

Block Device

file

hash_insert()

3. Demand
paging

thread

pagedir

vm

...

Hash table

2. Insert into
virtual page pool

vm_entry

vm_entry

vm_entry

1. Create
vm_entry

https://oslab.kaist.ac.kr/

mmap() and munmap()

26 Youjip Won

 int mmap(int fd, void *addr)

 Load file data into memory by demand paging.

 mmap()’ed page is swapped out to its original location in the file.

 For a fragmented page, fill the unused fraction of page with zero.

 Return mapping_id: unique id within a process to identify the mapped file.

 Fails if

 File size is 0.

 Addr is not page aligned.

 Address is already in use.

 Addr is 0.

 STDIN and STDOUT are not mappable..

 void munmap(mapid_t mapid)

 Unmap the mappings in the mmap_list which has not been previously unmapped.

https://oslab.kaist.ac.kr/

Requirements

27 Youjip Won

 All mappings of a process are implicitly unmapped when the process exits.

 When a mapping is unmapped, the pages are written back to the file.

 Upon munmap, the pages are removed from the process’ virtual page list.

 Once created, mapping is valid until it is unmapped regardless of the file is closed

or deleted.

 If the two or more processes map the same file, they do not have to see the

consistent view.

https://oslab.kaist.ac.kr/

Additional data structure and Functions to modify

28 Youjip Won

 struct mmap_file

 Data structure containing information from mapped files

 mapping id

 mapping file object

 mmap_file list element

 vm_entry list.

 bool handle_mm_fault(struct vm_entry *vme)

 Load data if vm_entry type is VM_FILE

 void process_exit (void)

 Release all vm_entry corresponding to mapping_list at the end of process.

https://oslab.kaist.ac.kr/

Managing mapped files

29 Youjip Won

Block device

file1
mmap_file

vm_entry

vm_entry

vm_entry

mmap_file

thread

mmap_list

…

Process address
space

file2

https://oslab.kaist.ac.kr/

Modify page fault handler for mmap()

30 Youjip Won

handle_mm_fault

Allocate
page?

YES

VM_BIN? VM_FILE? VM_ANON?

Fail

Load data
(file → memory)

Load data
(file → memory)

swap-in

YES YES YES

Set up page table

NO NO

Check the
vm_entry type

NO

Success

expand stack

Stack
growth

NO

YES

NO

Virtual memory

Memory Mapped File

Swapping & page
replacement policy

Stack extension

https://oslab.kaist.ac.kr/

Accessing User Address Space

31 Youjip Won

https://oslab.kaist.ac.kr/

Why should page fault not occur in kernel code?

 A deadlock on kernel resource can occur.

32 Youjip Won

Call system call: read()

Execute read()

driver locks “struct channel”

Read data from disk

Write data to user buffer

Handle page fault:

• Select a victim page.

• Write a victim page to swap space.

• Acquire driver lock.

User Context Kernel Context Interrupt Handler Context

Deadlock because of double
locking on driver lock

Context switch
(system call)

Context switch
(Page fault)

https://oslab.kaist.ac.kr/

Pinning Page

 Prevent evicting the pages accessed during system call

 Define pinning flag about each physical page.

 On every system call,

 Find the virtual page and pin the associated physical page.

 After the system call returns and before the system call handler returns, unpin

the pages

 On Swapping handler,

 Do not select a pinned page as a victim.

33 Youjip Won

https://oslab.kaist.ac.kr/

	Slide 1: Operating Systems Lab Part 3: Virtual Memory
	Slide 2: Overview of Virtual Memory
	Slide 3
	Slide 4: To Do’s
	Slide 5: Hardware Support
	Slide 6: Page Table Manipulation in Pintos (userprog/pagedir.c)
	Slide 7: struct page: New data structure required
	Slide 8: A page pool for swapping
	Slide 9: Swap-out
	Slide 10: Managing swap partition
	Slide 11: Functions offered by pintos for swap space manipulation
	Slide 12: Implementation
	Slide 13: Functions to write
	Slide 14: Functions to modify
	Slide 15: Functions for allocation/free page
	Slide 16: Swap-out
	Slide 17: Demand paging for anonymous page (stack or heap)
	Slide 18: Modify handle_mm_fault()
	Slide 19
	Slide 20: Expandable Stack
	Slide 21: When to expand stack
	Slide 22: Stack extension mechanism
	Slide 23
	Slide 24: mmap vs. munmap
	Slide 25: mmap and munmap
	Slide 26: mmap() and munmap()
	Slide 27: Requirements
	Slide 28: Additional data structure and Functions to modify
	Slide 29: Managing mapped files
	Slide 30: Modify page fault handler for mmap()
	Slide 31
	Slide 32: Why should page fault not occur in kernel code?
	Slide 33: Pinning Page

