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Overview of Virtual Memory

 Background of Virtual Memory in Pintos

 Requirements

 Paging(swapping)

 Growing stack

 Memory mapped file

 Accessing user memory
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Swapping
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To Do’s

 Implement data structure to represent physical page frame.

 Implement page replacement policy such as LRU, clock, second-chance

 swapping

 Store victim pages in swap space when they belong to data segment or stack 

segment.

 swap-out pages are reloaded into memory by demand paging.
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Hardware Support

 The dirty bit of page table is set to “1” by hardware when writing to the memory 

space

 The accessed bit in page table is set to ‘1’ by hardware each time the page is 

referenced

 When page with dirty bit “1” is selected as victim, the changes must always be 

stored on disk

 Hardware does not re-zero the accessed bit.

5 Youjip Won

ADDR AVL D 1 U W P
31 12 11 9 6 5 2 1 0

Accessed bit
Dirty bit

https://oslab.kaist.ac.kr/


Page Table Manipulation in Pintos 
(userprog/pagedir.c)

 bool pagedir_is_dirty (uint32_t *pd, const void *vpage)

 Return dirty bit of pte for vpage in pd

 void pagedir_set_dirty (uint32_t *pd, const void *vpage, 

bool dirty)

 Set the dirty bit to dirty in the pte for vpage in pd

 bool pagedir_is_accessed (uint32_t *pd, const void 

*vpage)

 Return access bit of pte for vpage in pd

 void pagedir_set_accessed (uint32_t *pd, const void 

*vpage, bool accessed)

 Set the access bit to accessed in the pte for vpage in pd

6 Youjip Won

https://oslab.kaist.ac.kr/


struct page: New data structure required

Select the physical page frame for replacement.

 Data structure representing each physical page that contains a user page

 physical address of page

 reference to the virtual page object to which physical page is mapped

 Reference to the thread structure to which it belongs

 lru: field for list
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struct page {

    // fill this out

};

pintos/src/vm/page.h
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A page pool for swapping
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 Swap partition is managed per swap slot unit(4 Kbyte).

 Maintaining a swap partition: swap bitmap (global variable in memory)

 Search bitmap for free slot.

 What happens to swap bitmap if the system crashes?

Managing swap partition
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Functions offered by pintos for swap space 
manipulation

 Swap partition is provided as block device in pintos.

 Functions for block device (src/block/block.c)

 struct block *block_get_role (enum block_type role)

 Return the block device (struct block *) fulfilling the given ROLE.

 ROLEs defined in pintos now (devices/block.h)

◼ BLOCK_KERNEL: OS Partition

◼ BLOCK_FILESYS: File system

◼ BLOCK_SCRATCH: Scratch partition

◼ BLOCK_SWAP: Swap partition

 void block_read (struct block *block, block_sector_t sector, 

void *buffer)

 Read contents at sector on block and save them at buffer

 void block_write (struct block *block, block_sector_t sector, 

const void *buffer)

 Write contents at buffer at sector on block
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Implementation

 LRU list for physical page frame 

 List of struct page

 List of physical pages allocated to user process

 functions for allocate/release physical page frame from the list

 When there runs out of physical page frame, select a victim and swap it out.

 Modify page fault handler for swapping.

 Before: Physical page is allocated directly when page fault occurs.

             When there is no page to allocate, pintos is finished. 

 After: Physical page is allocated from LRU list when page fault occurs.

          When there is no page to allocate, pintos swap in the page.
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Functions to write
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 Function about LRU list (initializing, insert, remove).

 Function to allocate a page from LRU list.

 Function to free page from LRU list.

 Function to select victim page and swap-out the page.

 e.g.: Clock algorithm, Second chance algorithm

 Function about swapping (initializing, swap in, swap out).
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Functions to modify

14 Youjip Won

 bool handle_mm_fault(struct vm_entry *vme)

 Modify to allocate physical pages from LRU list when page fault occurs

 Modify to swap-in if vm_entry type is VM_ANON

 static bool setup_stack(void **esp)

 Modify to allocate pages from LRU list when page fault occurs

 int main(void)

 Initialize LRU list.
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Functions for allocation/free page

 Try to obtain free space when memory cannot be allocated through 

palloc_get_page() within the page allocation function.
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palloc_get_page()

Swap-out victim page
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Swap-out
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 Type of a page in the physical page frame

 VM_BIN

 If dirty bit is “1”, write to the swap partition and free the page frame.

 Change type to VM_ANON for demand paging

 VM_FILE

 If dirty bit is “1” , write the page to the file and free the page frame.

 If dirty bit is “0”, free the page frame.

 VM_ANON

 Write to the swap partition.

 Mark the page  “not present” in pd (page directory).

void pagedir_clear_page (uint32_t *pd, void *upage) 
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Demand paging for  anonymous page (stack or 
heap)
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Modify handle_mm_fault()

 If vm_entry type is VM_ANON, modify code to swap in

18 Youjip Won

bool handle_mm_fault(struct vm_entry *vme){

    bool success = false;

    viod *kaddr;

    ...

    switch(vme->type){

        case VM_BIN:

        success = load_file(kaddr, vme);

        break;

        case VM_ANON:  

        /* insert swap in code */

        break;

    }

    ...

pintos/src/userporg/process.c
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Growing Stack
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Expandable Stack

 Implement expandable stack

 In current pintos, stack size is fixed to 4KB.

 Make the stack expandable.

 If a process accesses the address that lies outside the stack and that can be 

handled by expanding the stack, expand the stack. 

◼ e.g.  (access address < stack pointer – 32) Expand stack

 maximum size of stack is 8MB.
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 Expand the stack when the memory access is within 32 Byte of stack top.

 “PUSHA” instruction in 80x86 pushes 32 bytes at once.

When to expand stack
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Maximum Limit:
0xC0000000-8MByte

stack start : 
0xC0000000
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stack in case of page fault

stack pointer(esp)

https://oslab.kaist.ac.kr/


Stack extension mechanism
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Memory Mapped File
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mmap vs. munmap

main (int argc, char *argv[]) {

  int i;

  

  for (i = 1; i < argc; i++)     {

      int fd;

      mapid_t map;

      void *data = (void *) 0x10000000;

      int size;

      fd = open (argv[i]);

      size = filesize (fd);

      map = mmap (fd, data);

      write (STDOUT_FILENO, data, size);

      munmap (map);

    }

  return EXIT_SUCCESS;

}
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mmap (int fd, void* addr)

mmap and munmap
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mmap() and munmap()
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 int mmap(int fd, void *addr)

 Load file data into memory by demand paging.

 mmap()’ed page is swapped out to its original location in the file.

 For a fragmented page, fill the unused fraction of page with zero.

 Return mapping_id: unique id within a process to identify the mapped file.

 Fails if

 File size is 0.

 Addr is not page aligned.

 Address is already in use.

 Addr is 0.

 STDIN and STDOUT are not mappable..

 void munmap(mapid_t mapid)

 Unmap the mappings in the mmap_list which has not been previously unmapped.
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Requirements

27 Youjip Won

 All mappings of a process are implicitly unmapped when the process exits.

 When a mapping is unmapped, the pages are written back to the file.

 Upon munmap, the pages are removed from the process’ virtual page list.

 Once created, mapping is valid until it is unmapped regardless of the file is closed 

or deleted.

 If the two or more processes map the same file, they do not have to see the 

consistent view.
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Additional data structure and Functions to modify
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 struct mmap_file

 Data structure containing information from mapped files

 mapping id

 mapping file object

 mmap_file list element

 vm_entry list.

 bool handle_mm_fault(struct vm_entry *vme) 

 Load data if vm_entry type is VM_FILE

 void process_exit (void)

 Release all vm_entry corresponding to mapping_list at the end of process.
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Managing mapped files
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Modify page fault handler for mmap()
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Accessing User Address Space
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Why should page fault not occur in kernel code?

 A deadlock on kernel resource can occur.
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Call system call: read()

Execute read()

driver locks “struct channel”

Read data from disk

Write data to user buffer

Handle page fault:

• Select a victim page.

• Write a victim page to swap space.

• Acquire driver lock.

User Context Kernel Context Interrupt Handler Context

Deadlock because of double 
locking on driver lock

Context switch
(system call)

Context switch
(Page fault)
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Pinning Page

 Prevent evicting the pages accessed during system call

 Define pinning flag about each physical page.

 On every system call,

 Find the virtual page and pin the associated physical page.

 After the system call returns and before the system call handler returns, unpin 

the pages

 On Swapping handler,

 Do not select a pinned page as a victim.
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