
Youjip Won

Operating Systems Lab

Part 3: Virtual Memory

Address space of process in Pintos

 Pintos memory layout before project

3Youjip Won

Stack

Uninitialized Data
(BSS)

Text

Read

Initialized Data
(Data)

Text Page Table

Physical Memory
Process Addr Space Disk

Data

Virtual address Physical address

Virtual Memory

 Entire executable file is loaded at once at the beginning.

 Physical addresses of each page in address space are fixed at the

beginning of ‘fork/exec’.

 Result

Implement “Virtual Address”.

3 Youjip Won

To Do’s

Implement “Virtual Address”.

 Enable Demand paging/Swapping.

 Enable Stack Growth.

 Dynamic page allocation for page fault on stack

 Implement Memory mapped file.

 Implement mmap() and munmap().

 For a physical page, differentiate file_backed page and anonymous page.

 Enable Accessing User Memory.

4 Youjip Won

Demand Paging

5 Youjip Won

Basics

6 Youjip Won

 Virtual page: Virtual Page number (20 bit) + page offset (12bit)

 Page frame: physical frame number (20 bit) + page offset (12 bit)

 Page table:

 VPN → PFN

 It is hardware.

 Swap space: array of page sized blocks

A page in virtual address space

7 Youjip Won

 Load the page from the disk as requested.

 A page in VM can be either in-memory only or part of a file.

 text: part of file

 Data: part of file

 BSS: in memory

 Stack: in memory

 Heap: in memory

 mmap()ed region: part of file

Page fault in current Pintos

Userprog/exception.c

static void

page_fault (struct intr_frame *f)

{

…

 /* To implement virtual memory, delete the rest of the function

 body, and replace it with code that brings in the page to

 which fault_addr refers. */

 printf ("Page fault at %p: %s error %s page in %s context.\n",

 fault_addr,

 not_present ? "not present" : "rights violation",

 write ? "writing" : "reading",

 user ? "user" : "kernel");

 kill (f);

}

8 Youjip Won

Page fault in Pintos with VM

9 Youjip Won

 When page fault occurs? Modify the page_fault function

 Check if the memory reference is valid.

→ locate the content that needs to go into the virtual memory page

→ from the file, from the swap or can simply be all-zero page.

 For shared page, the page can be already in the page frame, but not in the page

table

 Invalid access → kill the process

 Not valid user address

 Kernel address

 Permission error (attempt to write to the read-only page)

 Allocate page frame.

 Fetch the data from the disk to the page frame.

 Update page table.

We need additional information for a virtual page

10 Youjip Won

 Virtual page number

 Read/write permission

 Type of virtual page

 a page of ELF executable file

 a page of general file

 a page of swap area

 Reference to the file object and offset(memory mapped file)

 Amount of data in the page

 Location in the swap area

 In-memory flag: is it in memory?

vm_entry

11

Page Table
Physical Memory

Load M

vm_entryEmpty

Empty

Empty

Empty

Empty

3) Page fault occur

File
Page

Process address space

4) Read 4KB page from
disk and load the page

into memory

Youjip Won

Disk

Data structure for VM

page

A set of virtual pages for a process: a set of
vm_entry

11Youjip Won

Text

Read

Disk

Data

Page Table
Physical Memory

Stack

Uninitialized Data
(BSS)

Initialized Data
(Data)

Text

Empty

Empty

Empty

Empty

Empty

Process Addr Space

vm_entry

vme

vme

vme

vme

vme

Table/Linked list/Hash table?

Virtual
Address

Physical
Address

Stack

…

Address Space in Pintos with VM

13 Youjip Won

Disk

Page Table Physical Memory

Text Data

thread

pagedir

vm

... hash

buckets

elem_cnt

bucket

…
bucket

bucket

…

bucket rInitialized Data
(Data)

Text

BSS

vm_entry

vm_entry

vm_entry

vm_entry

vm_entry

Hash table

vm_entry

14 Youjip Won

struct vm_entry{

// fill this out.

}

pintos/src/vm/page.h

 Organize the vm_entry: Hash table(src/lib/kernel/hash.*), linked list,

or etc.

Add vm_entry set to thread structure

struct thread

Since virtual address space is allocated for each process, define the hash

table to manage virtual pages.

15 Youjip Won

struct thread{

 /* Owned by thread.c. */

 tid_t tid; /* Thread identifier. */

 enum thread_status status; /* Thread state. */

 ...

 /* Owned by thread.c. */

 unsigned magic; /* Detects stack overflow. */

 struct hash vm; /*Hash table to manage virtual address space of thread*/
}

pintos/src/threads/thread.h

Modify start_process()

16 Youjip Won

static void start_process (void *file_name_)

{

 ...

/* Initializing the set of vm_entries, e.g. hash table */

/* Initialize interrupt frame and load executable */

 memset (&if_, 0, sizeof if_);

 ...

}

pintos/src/userprog/process.c

Modify exit()

 remove vm_entries when the process exits.

17 Youjip Won

void process_exit (void){

 struct thread *cur = thread_current();

 uint32_t *pd;

 ...

 palloc_free_page(cur -> fd);

 /* Add vm_entry delete function */

 pd = cur->pagedir;

 ...

}

pintos/src/userporg/process.c

Address Space Initialization

 Original Pintos: Allocate physical memory by reading all ELF image.

 Read Data and code segment by load_segment().

 Allocate physical page of stack by setup_stack().

 Pintos with VM

 Allocate page table: all entries are invalid.(not mapped).

 Allocate vm_entry for each page instead of allocating of physical memory.

 Modify load_segment().

 Add a function that initializes structures related to virtual address space.

◼ Remove the following: loading the binary file to virtual address space.

◼ Add the followings.

 allocate vm_entry structure.

 Initialize the field values.

 insert it to the hash table.

18 Youjip Won

Modify load_segment()

19 Youjip Won

load_segment()

Create vm_entry

Page table setting

Data load(file→page)

vm_entry file initialization

Page Allocate

read_bytes -= page_read_bytes;
zero_bytes -=page_zero_bytes;
ofs += page_read_bytes;
upage += PGSIZE;

Exit

false

true

Insert vm_entry to hash table

Add

Delete

while(read_bytes > 0 ||
zero_bytes>0)

Modify load_segment()

20 Youjip Won

static bool load_segment (struct file *file, off_t ofs, uint8_t *upage,

 uint32_t read_bytes, uint32_t zero_bytes, bool writable)

{

 ...

 while (read_bytes > 0 || zero_bytes > 0)

 {

 size_t page_read_byters = read_bytes < PGSIZE

 ? read_bytes : PGSIZE;

 size_t page_zero_bytes = PGSIZE – page_read_bytes;

 /* Create vm_entry(Use malloc) */

 /* Setting vm_entry members, offset and size of file to read

when virtual page is required, zero byte to pad at the end, … */

 /* Add vm_entry to hash table by insert_vme() */

 read_bytes -= page_read_bytes;

 zero_bytes -= page_zero_bytes;

 ofs += page_read_bytes;

 upage += PGSIZE;

 }

pintos/src/userprog/process.c

Delete allocating and
mapping physical

page part

Modify stack initialization function

 Original

 Allocate a single page

 Page table setting

 Stack pointer(esp) setting

 Add

 Create vm_entry of 4KB stack

 Initialize created vm_entry field value

 Insert vm hash table

21 Youjip Won

setup_stack()

Create vm_entry

Set up stack pointer

Page table setting

vm_entry filed initialization

Page allocate

Add vm_entry to hash table

Add

Exit

Modify setup_stack()

22 Youjip Won

static bool setup_stack (void **esp)

{

 ...

 if (kpage != NULL)

 {

 ...

 }

 /* Create vm_entry */

 /* Set up vm_entry members */

 /* Using insert_vme(), add vm_enty to hash table */

 ...

}

pintos/src/vm/page.c

Design: Demand Paging

23 Youjip Won

vm_entry

vm_entry

vm_entry

vm_entry

Disk

vm_entry

Physical Memory

Text Data

thread

pagedir

vm

... hash

buckets

elem_cnt

bucket

…
bucket

bucket

…

bucket

2. vm_entry
check

find_vme()

3. Memory allocation
handle_mm_fault()

Stack

…

Page Table

rInitialized Data
(Data)

Text

BSS

4. disk->memory
Data load
load_file()

1. Access to
memory and

 page_fault()

5. Set up page
table

Install_page()

To do 1: page fault handling

 page_fault() exists in Pintos to manage the page fault.

 pintos/src/userprog/exception.c

◼ static void page_fault (struct intr_frame *f)

◼ When existing Pintos manage page fault, after checking permission and validation of

address, if error occurs, generate “segmentation fault” and kill(-1) to terminate.

◼ Delete code related to kill(-1).

◼ Check Validation of fault_addr.

◼ Define the new page fault handler and call it.

 handle_mm_fault(struct vm_entry *vme)

24 Youjip Won

page fault management

25 Youjip Won

static void page_fault (struct intr_frame *f){

 ...

 /* Determine cause. */

 not_present = (f->error_code & PF_P) == 0;

 write = (f->error_code & PF_W) != 0;

 user = (f->error_code & PF_U) != 0;

 exit(-1);

 /* To implement virtual memory, delete the rest of the function

 body, and replace it with code that brings in the page to

 which fault_addr refers. */

 printf ("Page fault at %p: %s error %s page in %s context.\n",

 fault_addr,

 not_present ? "not present" : "rights violation",

 write ? "writing" : "reading",

 user ? "user" : "kernel");

 kill (f);

}

pintos/src/userporg/exception.c

Delete & implement code

page fault management

26 Youjip Won

page_fault()

Valid
addr?

YES

Page table set up

Data load
(file → memory)

Page allocation

NO

failsuccess

vm_entry search

handle_mm_fault()

To do 2: implement page fault handler

 Page fault handler function(pintos/src/userprog/process.c)

 bool handle_mm_fault(struct vm_entry *vme)

 handle_mm_fault is called to handle page fault.

 When page fault occurs, allocate physical memory.

 Load file in the disk to physical memory.

◼ Use load_file (void* kaddr, struct vm_entry *vme).

 Update the associated page table entry after loading into physical memory.

◼ Use static bool install_page(void *upage, void *kpage,bool

writable).

27 Youjip Won

bool handle_mm_fault (struct vm_entry *vme)

{

}

page fault handler for loading the ELF file

28 Youjip Won

handle_mm_fault

Page
allocation?

YES

VM_BIN?

Fail

Data load
(file → memory)

YES

Page table set up

NO

Check the
vm_entry type

NO

Success

Later, we will cover

anonymous page and the other

file backed page.

Here, we only consider the

ELF file.

To do 3: load the file to physical memory

 After physical memory allocation, load the file page from the disk to physical

memory(Pintos/src/vm/page.c)

 bool load_file (void* kaddr, struct vm_entry *vme)

 Function to load a page from the disk to physical memory

 Implement a function to load a page to kaddr by <file, offset> of vme.

 Use file_read_at() or file_read() + file_seek().

 If fail to write all 4KB, fill the rest with zeros.

29 Youjip Won

bool load_file (void *kaddr, struct vm_entry *vme)

{

/* Using file_read_at()*/

/* Write physical memory as much as read_bytes by file_read_at*/

/* Return file_read_at status*/

/* Pad 0 as much as zero_bytes*/

/* if file is loaded to memory, return true */

}

vm_entry

To do 3: load a file page to physical memory

30 Youjip Won

VM_BIN

vaddr
zero_bytes
read_bytes

File

Disk

Physical
Memory

Data load
(file->memory)

load_file()

file

inode
On_disk
inode

offset

file

…

Page Table

0 0…

read_bytes

Functions for demand paging

 pintos/src/userprog/exception.c

 static void page_fault (struct intr_frame *f)

 /* When page fault occurs, existing code kill(-1)to terminate*/

 /* Delete code related to kill(-1) */

 /* Modify code to search for vm_entry and allocate page using handle_mm_fault() */

 pintos/src/vm/page.c

bool load_file (void* kaddr, struct vm_entry *vme)

 /* Load page in disk to physical memory */

 /* Implement function to load a page to kaddr by <file, offset> of vme */

 /* Use file_read_at() or file_read() + file_seek() */

 pintos/src/userprog/process.c

bool handle_mm_fault(struct vm_entry *vme)

/* handle_mm_fault is function to handle page fault */

/* If page fault occurs, allocate physical page */

31 Youjip Won

Files to modify

 Modify Makefile.build

 Add code to use added page file

32 Youjip Won

pintos/Makefile.build

...

userprog_SRC += userprog/tss.c # TSS management.

No virtual memory code yet.

#vm_SRC = vm/file.c # Some file.

vm_SRC = vm/page.c

Filesystem code.

filesys_SRC = filesys/filesys.c # Filesystem core.

filesys_SRC += filesys/free-map.c # Free sector

bitmap.

filesys_SRC += filesys/file.c # Files.

filesys_SRC += filesys/directory.c # Directories.

filesys_SRC += filesys/inode.c # File headers.

filesys_SRC += filesys/fsutil.c # Utilities.

...

Files to modify (Cont.)

 Modify Makefile.tests

 If not, occurs fail when make check

 Test run times may be exceeded depending on the environment.

33 Youjip Won

...

ifdef PROGS

include ../../Makefile.userprog

endif

TIMEOUT = 60 /* Change the test run time for Pintos from 60
seconds to 120 seconds */

clean::

 rm -f $(OUTPUTS) $(ERRORS) $(RESULTS)

grade:: results

 $(SRCDIR)/tests/make-grade $(SRCDIR) $< $(GRADING_FILE)

| tee $@

...

pintos/tests/Make.tests

Additional Functions you may want to implement

void vm_init(struct hash* vm)

 /* hash table initialization */

 void vm_destroy(struct hash *vm)

 /* hash table delete */

 struct vm_entry* find_vme(void *vaddr)

 /* Search vm_entry corresponding to vaddr in the address space of the

current process */

 bool insert_vme(struct hash *vm, struct vm_entry *vme)

 /* Insert vm_entry to hash table*/

 bool delete_vme(struct hash *vm, struct vm_entry *vme)

 /* Delete vm_entry from hash table */

34 Youjip Won

Functions to add/modify

static unsigned vm_hash_func(const struct hash_elem *e, void *aux

UNUSED)

 /* Calculate where to put the vm_entry into the hash table */

 static bool vm_less_func(const struct hash_elem *a, const struct

hash_elem *b, void *aux UNUSED)

 /* Compare address values of two entered hash_elem */

 static void vm_destroy_func(struct hash_elem *e, void *aux UNUSED)

 /* Remove memory of vm_entry */

35 Youjip Won

Verify virtual memory project

 Confirm code behavior after completing virtual memory task

 path : pintos/src/vm

$ make check

 28 of 109 tests found to fail as a result of execution

36 Youjip Won

 pt-grow-stack

 page-linear

 page-merge-stk

 mmap-unmap

 mmap-exit

 mmap-inherit

 mmap-over-data

 pt-grow-pusha

 page-parallel

 page-merge-mm

 mmap-overlap

 mmap-shuffle

 mmap-misalign

 mmap-over-stk

 pt-big-stk-obj

 page-merge-seq

 mmap-read

 mmap-twice

 mmap-bad-fd

 mmap-null

 mmap-remove

 pt-grow-stk-sc

 page-merge-par

 mmap-close

 mmap-write

 mmap-clean

 mmap-over-code

 mmap-zero

Appendix

37 Youjip Won

Page address mapping function

#include “usrprog/process.c”

 static bool install_page(void *upage, void *kpage,

 bool writable)

 Map physical page kpage and virtual page upage

 writable: writable(1), read-only(0)

38 Youjip Won

Set up page table

Process address space

Frame5

Frame4

Frame3

Frame2

Frame1

Page Frame NumberPage Table

Physical page allocation and releasing interface

#include <threads/palloc.h>

 void *palloc_get_page(enum palloc_flags flags)

 Allocate a 4KB page.

 Return physical address of page.

 flags

 PAL_USER: allocate pages from user memory pool.

 PAL_KERNEL: allocate pages in kernel memory pool.

 PAL_ZERO: initialize pages to ‘0’.

 void palloc_free_page(void *page)

 Use physical address of page as argument.

 Put page back in free memory pool.

39 Youjip Won

Pintos dynamic memory allocation and releasing
interface

#include <threads/malloc.h>

 void *malloc(size_t size)

 Allocate the memory chunk of ‘size’ and return start address.

 Use to allocate memory for dynamic objects such as vm_entry.

 void free(void* p)

 Release the memory space allocated by malloc().

 Use address allocated memory through malloc() as argument.

40 Youjip Won

	Slide 1: Operating Systems Lab Part 3: Virtual Memory
	Slide 2: Address space of process in Pintos
	Slide 3: Virtual Memory
	Slide 4: To Do’s
	Slide 5
	Slide 6: Basics
	Slide 7: A page in virtual address space
	Slide 8: Page fault in current Pintos
	Slide 9: Page fault in Pintos with VM
	Slide 10: We need additional information for a virtual page
	Slide 11: vm_entry
	Slide 12: A set of virtual pages for a process: a set of vm_entry
	Slide 13: Address Space in Pintos with VM
	Slide 14: vm_entry
	Slide 15: Add vm_entry set to thread structure
	Slide 16: Modify start_process()
	Slide 17: Modify exit()
	Slide 18: Address Space Initialization
	Slide 19: Modify load_segment()
	Slide 20: Modify load_segment()
	Slide 21: Modify stack initialization function
	Slide 22: Modify setup_stack()
	Slide 23: Design: Demand Paging
	Slide 24: To do 1: page fault handling
	Slide 25: page fault management
	Slide 26: page fault management
	Slide 27: To do 2: implement page fault handler
	Slide 28: page fault handler for loading the ELF file
	Slide 29: To do 3: load the file to physical memory
	Slide 30: To do 3: load a file page to physical memory
	Slide 31: Functions for demand paging
	Slide 32: Files to modify
	Slide 33: Files to modify (Cont.)
	Slide 34: Additional Functions you may want to implement
	Slide 35: Functions to add/modify
	Slide 36: Verify virtual memory project
	Slide 37
	Slide 38: Page address mapping function
	Slide 39: Physical page allocation and releasing interface
	Slide 40: Pintos dynamic memory allocation and releasing interface

