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Operating Systems Lab

Part 3: Virtual Memory



Address space of process in Pintos

 Pintos memory layout before project
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Virtual Memory

 Entire executable file is loaded at once at the beginning. 

 Physical addresses of each page in address space are fixed at the 

beginning of ‘fork/exec’.

 Result

Implement “Virtual Address”.
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To Do’s

Implement “Virtual Address”.

 Enable Demand paging/Swapping.

 Enable Stack Growth.

 Dynamic page allocation for page fault on stack

 Implement Memory mapped file.

 Implement mmap() and munmap().

 For a physical page, differentiate file_backed page and anonymous page. 

 Enable Accessing User Memory.
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Demand Paging
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Basics
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 Virtual page: Virtual Page number (20 bit) + page offset (12bit)

 Page frame: physical frame number (20 bit) + page offset (12 bit)

 Page table: 

 VPN → PFN

 It is hardware.

 Swap space: array of page sized blocks



A page in virtual address space
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 Load the page from the disk as requested.

 A page in VM can be either in-memory only or part of a file.

 text: part of file

 Data: part of file

 BSS: in memory

 Stack: in memory

 Heap: in memory

 mmap()ed region: part of file



Page fault in current Pintos

Userprog/exception.c

static void

page_fault (struct intr_frame *f) 

{

…

  /* To implement virtual memory, delete the rest of the function

     body, and replace it with code that brings in the page to

     which fault_addr refers. */

  printf ("Page fault at %p: %s error %s page in %s context.\n",

          fault_addr,

          not_present ? "not present" : "rights violation",

          write ? "writing" : "reading",

          user ? "user" : "kernel");

  kill (f);

}
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Page fault in  Pintos with VM
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 When page fault occurs? Modify the page_fault function

 Check if the memory reference is valid. 

→ locate the content that needs to go into the virtual memory page 

→ from the file, from the swap or can simply be all-zero page.

 For shared page, the page can be already in the page frame, but not in the page 

table

 Invalid access → kill the process

 Not valid user address

 Kernel address

 Permission error (attempt to write to the read-only page)

 Allocate page frame.

 Fetch the data from the disk to the page frame.

 Update page table.



We need additional information for a virtual page

10 Youjip Won

 Virtual page number

 Read/write permission

 Type of virtual page

 a page of ELF executable file

 a page of general file

 a page of swap area

 Reference to the file object and offset(memory mapped file)

 Amount of data in the page

 Location in the swap area

 In-memory flag: is it in memory?



vm_entry
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A set of virtual pages for a process: a set of 
vm_entry
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Stack

…

Address Space in Pintos with VM
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vm_entry
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struct vm_entry{

// fill this out.

}

pintos/src/vm/page.h

 Organize the vm_entry: Hash table(src/lib/kernel/hash.*), linked list, 

or etc.



Add vm_entry set to thread structure

struct thread

Since virtual address space is allocated for each process, define the hash 

table to manage virtual pages.
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struct thread{

    /* Owned by thread.c. */

    tid_t tid;                    /* Thread identifier. */

    enum thread_status status;    /* Thread state. */

    ...

    /* Owned by thread.c. */

    unsigned magic;               /* Detects stack overflow. */

    struct hash vm;  /*Hash table to manage virtual address space of thread*/
}

pintos/src/threads/thread.h



Modify start_process()
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static void start_process (void *file_name_)

{

 ...

/* Initializing the set of vm_entries, e.g. hash table */ 

/* Initialize interrupt frame and load executable */

 memset (&if_, 0, sizeof if_);

 ...

}

pintos/src/userprog/process.c



Modify exit()

 remove vm_entries when the process exits.
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void process_exit (void){

    struct thread *cur = thread_current();

    uint32_t *pd;

    ...

    palloc_free_page(cur -> fd);

    /* Add vm_entry delete function */

    pd = cur->pagedir;

    ...

}

pintos/src/userporg/process.c



Address Space Initialization

 Original Pintos: Allocate physical memory by reading all ELF image.

 Read Data and code segment by load_segment().

 Allocate physical page of stack by setup_stack().

 Pintos with VM

 Allocate page table: all entries are invalid.(not mapped).

 Allocate vm_entry for each page instead of allocating of physical memory.

 Modify load_segment().

 Add a function that initializes structures related to virtual address space.

◼ Remove the following: loading the binary file to virtual address space.

◼ Add the followings.

 allocate vm_entry structure.

 Initialize the field values.

 insert it to the hash table.
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Modify load_segment()
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Modify load_segment()
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static bool load_segment (struct file *file, off_t ofs, uint8_t *upage, 

  uint32_t read_bytes, uint32_t zero_bytes, bool writable)

{

    ...

 while (read_bytes > 0 || zero_bytes > 0)

 {

  size_t page_read_byters = read_bytes < PGSIZE 

      ? read_bytes : PGSIZE;

  size_t page_zero_bytes = PGSIZE – page_read_bytes;

  .....

  /* Create vm_entry(Use malloc) */

  /* Setting vm_entry members, offset and size of file to read 

when virtual page is required, zero byte to pad at the end, … */

  /* Add vm_entry to hash table by insert_vme() */

  read_bytes -= page_read_bytes;

  zero_bytes -= page_zero_bytes;

  ofs += page_read_bytes;

  upage += PGSIZE;

 }

pintos/src/userprog/process.c

Delete allocating and 
mapping physical 

page part



Modify stack initialization function

 Original

 Allocate a single page

 Page table setting

 Stack pointer(esp) setting

 Add

 Create vm_entry of 4KB stack

 Initialize created vm_entry field value

 Insert vm hash table
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Modify setup_stack()
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static bool setup_stack (void **esp)

{

 ...

 if (kpage != NULL)

 {

  ...

 }

 /* Create vm_entry */

 /* Set up vm_entry members */

 /* Using insert_vme(), add vm_enty to hash table */

 ...

}

pintos/src/vm/page.c



Design: Demand Paging
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To do 1: page fault handling

 page_fault() exists in Pintos to manage the page fault. 

 pintos/src/userprog/exception.c

◼ static void page_fault (struct intr_frame *f)

◼ When existing Pintos manage page fault, after checking permission and validation of 

address, if error occurs, generate “segmentation fault” and kill(-1) to terminate. 

◼ Delete code related to kill(-1).

◼ Check Validation of fault_addr.

◼ Define the new page fault handler and call it.

 handle_mm_fault(struct vm_entry *vme)
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page fault management
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static void page_fault (struct intr_frame *f){

    ...

    /* Determine cause. */

    not_present = (f->error_code & PF_P) == 0;

    write = (f->error_code & PF_W) != 0;

    user = (f->error_code & PF_U) != 0;

    exit(-1);

    /* To implement virtual memory, delete the rest of the function

     body, and replace it with code that brings in the page to

     which fault_addr refers. */

    printf ("Page fault at %p: %s error %s page in %s context.\n",

          fault_addr,

          not_present ? "not present" : "rights violation",

          write ? "writing" : "reading",

          user ? "user" : "kernel");

    kill (f);

}

pintos/src/userporg/exception.c

Delete & implement code



page fault management
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To do 2: implement page fault handler

 Page fault handler function(pintos/src/userprog/process.c)

 bool handle_mm_fault(struct vm_entry *vme)

 handle_mm_fault is called to handle page fault.

 When page fault occurs, allocate physical memory.

 Load file in the disk to physical memory.

◼ Use load_file (void* kaddr, struct vm_entry *vme).

 Update the associated page table entry after loading into physical memory.

◼ Use static bool install_page(void *upage, void *kpage,bool 

writable).
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bool handle_mm_fault (struct vm_entry *vme)

{

 

}



page fault handler for loading the ELF file
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To do 3: load the file to physical memory

 After physical memory allocation, load the file page from the disk to physical 

memory(Pintos/src/vm/page.c)

 bool load_file (void* kaddr, struct vm_entry *vme)

 Function to load a page from the disk to physical memory

 Implement a function to load a page to kaddr by <file, offset> of vme.

 Use file_read_at() or file_read() + file_seek().

 If fail to write all 4KB, fill the rest with zeros.
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bool load_file (void *kaddr, struct vm_entry *vme)

{

/* Using file_read_at()*/

/* Write physical memory as much as read_bytes by file_read_at*/

/* Return file_read_at status*/ 

/* Pad 0 as much as zero_bytes*/

/* if file is loaded to memory, return true */

 
}



vm_entry

To do 3: load a file page to physical memory
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Functions for demand paging

 pintos/src/userprog/exception.c

    static void page_fault (struct intr_frame *f)

 /* When page fault occurs, existing code kill(-1)to terminate*/ 

 /* Delete code related to kill(-1) */

 /* Modify code to search for vm_entry and allocate page using handle_mm_fault() */

 pintos/src/vm/page.c

bool load_file (void* kaddr, struct vm_entry *vme)

 /* Load page in disk to physical memory */      

 /* Implement function to load a page to kaddr by <file, offset> of vme */

 /* Use file_read_at() or file_read() + file_seek() */

 pintos/src/userprog/process.c

bool handle_mm_fault(struct vm_entry *vme)

/* handle_mm_fault is function to handle page fault */

/* If page fault occurs, allocate physical page */
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Files to modify

 Modify Makefile.build

 Add code to use added page file
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pintos/Makefile.build

...

userprog_SRC += userprog/tss.c # TSS management.

# No virtual memory code yet.

#vm_SRC = vm/file.c   # Some file.

vm_SRC = vm/page.c

# Filesystem code.

filesys_SRC  = filesys/filesys.c # Filesystem core.

filesys_SRC += filesys/free-map.c # Free sector 

bitmap.

filesys_SRC += filesys/file.c  # Files.

filesys_SRC += filesys/directory.c # Directories.

filesys_SRC += filesys/inode.c # File headers.

filesys_SRC += filesys/fsutil.c # Utilities.

...



Files to modify (Cont.)

 Modify Makefile.tests

 If not, occurs fail when make check

 Test run times may be exceeded depending on the environment.
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...

ifdef PROGS

include ../../Makefile.userprog

endif

TIMEOUT = 60  /* Change the test run time for Pintos from 60 
seconds to 120 seconds */

clean::

 rm -f $(OUTPUTS) $(ERRORS) $(RESULTS) 

grade:: results

 $(SRCDIR)/tests/make-grade $(SRCDIR) $< $(GRADING_FILE) 

| tee $@

...

pintos/tests/Make.tests



Additional Functions you may want to implement

void vm_init(struct hash* vm)

        /* hash table initialization */

  void vm_destroy(struct hash *vm)

        /* hash table delete */

 struct vm_entry* find_vme(void *vaddr)

        /* Search vm_entry corresponding to vaddr in the address space of the 

current process */

  bool insert_vme(struct hash *vm, struct vm_entry *vme)

        /* Insert vm_entry to hash table*/

  bool delete_vme(struct hash *vm, struct vm_entry *vme)

     /* Delete vm_entry from hash table */
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Functions to add/modify

static unsigned vm_hash_func(const struct hash_elem *e, void *aux 

UNUSED)

              /* Calculate where to put the vm_entry into the hash table */

  static bool vm_less_func(const struct hash_elem *a, const struct 

hash_elem *b, void *aux UNUSED)

        /* Compare address values of two entered hash_elem */

  static void vm_destroy_func(struct hash_elem *e, void *aux UNUSED)

     /* Remove memory of vm_entry */

  

35 Youjip Won



Verify virtual memory project

 Confirm code behavior after completing virtual memory task

 path : pintos/src/vm

$ make check

 28 of 109 tests found to fail as a result of execution
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 pt-grow-stack

 page-linear

 page-merge-stk

 mmap-unmap

 mmap-exit

 mmap-inherit

 mmap-over-data

 pt-grow-pusha

 page-parallel

 page-merge-mm

 mmap-overlap

 mmap-shuffle

 mmap-misalign

 mmap-over-stk

 pt-big-stk-obj

 page-merge-seq

 mmap-read

 mmap-twice

 mmap-bad-fd

 mmap-null

 mmap-remove

 pt-grow-stk-sc

 page-merge-par

 mmap-close

 mmap-write

 mmap-clean

 mmap-over-code

 mmap-zero



Appendix
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Page address mapping function

#include “usrprog/process.c”

  static bool install_page(void *upage, void *kpage, 

                           bool writable) 

 Map physical page kpage and virtual page upage

 writable: writable(1), read-only(0)

38 Youjip Won

Set up page table

Process address space

Frame5

Frame4

Frame3

Frame2

Frame1

Page Frame NumberPage Table



Physical page allocation and releasing interface

#include <threads/palloc.h>

  void *palloc_get_page(enum palloc_flags flags)

 Allocate a 4KB page.

 Return physical address of page.

 flags

 PAL_USER: allocate pages from user memory pool.

 PAL_KERNEL: allocate pages in kernel memory pool.

 PAL_ZERO: initialize pages to ‘0’.

  void palloc_free_page(void *page)

 Use physical address of page as argument.

 Put page back in free memory pool.

39 Youjip Won



Pintos dynamic memory allocation and releasing 
interface

#include <threads/malloc.h>

  void *malloc(size_t size)

 Allocate the memory chunk of ‘size’ and return start address.

 Use to allocate memory for dynamic objects such as vm_entry.

  void free(void* p)

 Release the memory space allocated by malloc().

 Use address allocated memory through malloc() as argument.
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